Laccase-catalyzed decolorization and detoxification of Acid Blue 92: statistical optimization, microtoxicity, kinetics, and energetics
نویسندگان
چکیده
BACKGROUND In recent years, enzymatic-assisted removal of hazardous dyes has been considered as an alternative and eco-friendly method compared to those of physicochemical techniques. The present study was designed in order to obtain the optimal condition for laccase-mediated (purified from the ascomycete Paraconiothyrium variabile) decolorization of Acid Blue 92; a monoazo dye, using response surface methodology (RSM). So, a D-optimal design with three variables, including pH, enzyme activity, and dye concentration, was applied to optimize the decolorization process. In addition, the kinetic and energetic parameters of the above mentioned enzymatic removal of Acid Blue 92 was investigated. RESULTS Decolorization of Acid Blue 92 was maximally (94.1% ± 2.61) occurred at pH 8.0, laccase activity of 2.5 U/mL, and dye concentration of 75 mg/mL. The obtained results of kinetic and energetic studies introduced the laccase-catalyzed decolorization of Acid Blue 92 as an endothermic reaction (Ea, 39 kJ/mol; ΔS, 131 J/mol K; and ΔH, 40 kJ/mol) with K m and V max values of 0.48 mM and 227 mM/min mg, respectively. Furthermore, the results of microtoxicity study revealed that the toxicity of laccase-treated dye was significantly reduced compared to the untreated dye. CONCLUSIONS To sum up, the present investigation introduced the Paraconiothyrium variabile laccase as an efficient biocatalyst for decolorization of synthetic dye Acid Blue 92.
منابع مشابه
Application of Face-Centered Central Composite Design (FCCCD) in Optimization of Enzymatic Decolorization of Two Azo Dyes: A Modeling vs. Empirical Comparison
Biological treatment, especially enzymatic methods, can be employed for effective and environmental- friendly treatment of dye effluents. Laccase, belonging to the blue multi-copper oxidases category, can oxidize a wide variety of substrates, especially synthetic dyes. In this study, laccase was used to biodegrade two azo dyes, i.e., Direct Red 23 and Acid Blue 92. Before conducting the exp...
متن کاملStudies on the laccase-mediated decolorization, kinetic, and microtoxicity of some synthetic azo dyes
BACKGROUND Enzymatic elimination of synthetic dyes, one of the most environmentally hazardous chemicals, has gained a great interest during the two last decades. The present study was performed to evaluate the decolorization and detoxification potential of the purified laccase of Paraconiothyrium variabile in both non-assisted and hydroxybenzotriazole-aided form against six azo dyes. RESULTS ...
متن کاملBiocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger
BACKGROUND Laccase-like multicopper oxidases have been reported in several Aspergillus species but they remain uncharacterized. The biocatalytic potential of the Aspergillus niger fungal pigment multicopper oxidases McoA and McoB and ascomycete laccase McoG was investigated. RESULTS The laccase-like multicopper oxidases McoA, McoB and McoG from the commonly used cell factory Aspergillus niger...
متن کاملDecolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads
BACKGROUND Decolorization of hazardous synthetic dyes using laccases in both free and immobilized form has gained attention during the last decades. The present study was designed to prepare immobilized laccase (purified from Paraconiothyrium variabile) on porous silica beads followed by evaluation of both free and immobilized laccases for decolorization of two synthetic dyes of Acid Blue 25 an...
متن کاملDecolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15
Azo dyes constitute the largest and most versatile class of synthetic dyes used in the textile, pharmaceutical, food and cosmetics industries and represent major components in wastewater from these industrial dying processes. Biological decolorization of azo dyes occurs efficiently under low oxygen to anaerobic conditions. However, this process results in the formation of toxic and carcinogenic...
متن کامل